EE 448 Lab Tachometer

Jessica Bader, Meghna Chandrasekaran, Katrina Choong, Seth Noel, Kyle Zelnio Client / Advisor: Matt Post SDMay19-30, Tachometer

Executive Summary

The Problem

Project Plan

Requirements

Functional	Non-Functional
 Perform all lab functions 99% accuracy Range from 100 to 2000 RPM 	 More cost-effective User friendly Documented sufficiently Resistant to breaking

Use Cases

	Student	ETG Worker
•	Change the COM port Check the motor RPM Use the 'help' button	 Mount the tachometer Test the mount stability Load the software

System Design & Development

Design Plan / Objectives

• Satisfy all requirements

- Approval from all user groups
- Field testing

System Constraints

Assumptions	Limitations
 Used by two students Used in the EE 448 lab Lab/lab setup will not be drastically changed Students will refrain from touching The lab computers run on Windows 	 The RPM should only go from 100 to 2000 RPM The size of the tool should be no larger than the motor it is evaluating The cost to produce the end product should not exceed \$500

Design Trade-Offs

Optical EncoderFast, easyExpensive	 Low-Pass Filter Cheap and easily accessible Requires time to design
Tiva BoardStarted hereNeed to rewrite	 Arduino Easy to code fast No previous experience
Java Previous experience but required learning new, unfamiliar functionalities 	 Python Client suggested Limited previous experience

Design Block Diagram / Description of Modules / Interfaces

Architectural Diagram / Constraints

GUIPrice

- Motor
- Lab

Implementation

Implementation Diagram

Technologies / Software Used and Rationale

GUI	Microcontroller	Hardware
 IDE: PyCharm Libraries: tkinter, serial, PyInstaller 	 Microcontroller: Arduino Nano Language: Arduino 	 Filter: Low-pass Sensor: Hall effect CAD: SolidWorks, MultiSim

Standards / Best Practices

- IEEE Standard for Software and System Test Documentation
- IEEE Standard for System, Software, and Hardware Verification and Validation
- IEEE Guide for Selecting and Using Reliability Predictions Based on IEEE 1413
- Peer Code Reviews

Testing, Validation, & Evaluation

Test Plan

- All manual tests
- Unit, Interface, System Integration, and Field testing
- Focus on linking to requirements

Unit Testing / Interface Testing

Unit	Interface
(Software) Function Requirement #4:GUI for user interaction	 (Hardware) Requirement: Hardware output a pulse should be clean and consistent With 0.5% accuracy From 100 RPM to 2000 RPM
 (Hardware) Requirement: Hall effect sensor will create clear pulse 	 (Software) Requirement: Calculate RPM with 0.5% accuracy From 100 RPM to 2000 RPM

System Integration Testing / Field Testing / Validation and Verification

System	Field	Validation and Verification
 Functional Requirement #2 & #3: Accuracy of 99% From 100 to 2000 RPM 	 Non-Functional Requirement #2: It will have a user-friendly GUI 	Non-Functional Requirement #1:Cost effective
Functional Requirement #1:Perform all lab functions.	 Non-Functional Requirement #3: It will be documented sufficiently 	

Evaluation

- Meets all requirements
- Client, student, professor, and TA approval

- 88% cost reduction
- 80% time reduction
- Removed direct user/motor interaction
- Rated 9.5/10 for ease of use

Project & Risk Management

Roles and Responsibilities

Role	Member
Hardware Team	Kyle, Katrina, Seth*
Software Team	Meghna, Jessica, Seth*
Systems Engineer	Seth
Testing Team	Meghna, Jessica, Seth
Timeline Manager	Katrina
Communication Manager	Jessica

* refers to member holding this role for a partial semester

Task Decomposition

Task	Team Member(s)	Task	Team Member(s)
GUI creation	Jessica, Meghna	Mounting	Katrina, Kyle
Arduino programming	Jessica, Meghna	Low-pass circuit design	Seth
GUI/Arduino interface	Jessica, Meghna	PCB Design	Kyle
Software testing	Jessica, Meghna, Seth	Hardware testing	Seth
Picking/ordering components	Seth, Katrina, Kyle	System-level testing	Seth, Meghna, Jessica

Project Schedule

Tachometer														
					% Software Completed		% Hardware Completed		% Team Completed		% Receiving Fe	ed; Testing		
			Weeks											
ACTIVITY	PLAN START	PLAN END	11	12	13	14	15	16	17	18	19	20	21	22
Re-evalute design to add hall effect sensor	14-Jan	28-Jan												
Safety Training with Lee Harker to maintanence shop	28-Jan	3-Feb												
Write Arduino code to take input and note change between pulses to calculate RPM	28-Jan	3-Feb												
Take measurements of spacing in lab. Create mock mount for sensor	3-Feb	10-Feb												
Create GUI	3-Feb	10-Feb												
Test max and min distance of sensor. Create 3D model of sensor mount	10-Feb	18-Feb												
Connect microcontroller to GUI	10-Feb	18-Feb												
Adjusted sensor to fit more properly and added height adjustments	18-Feb	24-Feb												
Connect mircocontroller to GUI (Continuation of last week)	18-Feb	24-Feb												
Add adjustments to sensor mount. Sketch arduino mount and implement in Solid works	25-Feb	24-Mar												
Test software component for accuracy	25-Feb	24-Mar												
Design a fork mount to in	25-Mar	31-Mar												
Implement code bug fixes as found in testing	25-Mar	31-Mar												
Rework fork mount and arduino mount	1-Apr	7-Apr												
Allow the user to modify the com port	1-Apr	7-Apr												
Create low pass filter to fix noise coming from AC motor	8-Apr	14-Apr												1
Create an executable file for the GUI	8-Apr	14-Apr												
Test in 448 lab with students. Receive feedback of design	15-Apr	21-Apr												
Solder lower pass filter and arduino on board. Create hardware for all motors	15-Apr	21-Apr												
Make sure software is up to date	15-Apr	21-Apr												
Update documentation	22-Apr	3-May												-
Feedback given is implemented into final design	22-Apr	3-May												

SDMay19-30, Tachometer

23

Risks and Mitigation

Anticipated	Actual
Shipping time for parts	Shipping time for parts
Redo design and implementation	Testing software without hardware
Redo our documentation	System needed to be mounted securely
Work on hardware and software at the same time	System would not be documented well enough to maintain in future

Lessons Learned

- Test in the environment early
- Check with first to third party users early
- Order parts early

Conclusions

Closing Remarks

- Met all requirements
 - Client, student, TA, and professor approval
 - Less cost
 - Higher durability
 - Save time

Future Work

- Use the GUI to control the motor
- Set the microcontrollers to the same port
- Put the program icon on the desktop

List of References

IEEE Standard for Software and System Test, IEEE Standard 829, 2008.

IEEE Standard for System, Software, and Hardware Verification and Validation, IEEE Standard 1012, 2012.

- *IEEE Guide for Selecting and Using Reliability Predictions Based on IEEE 1413*, IEEE Standard 1413.1, 2002.
- T. Bigelow. "EE 448 Lab 5 Report.doc." Unpublished manuscript, EE 448: Introduction to AC Circuits and Motors, Iowa State University, Ames, Iowa, U.S.A.
- T. Bigelow. "EE 448 Lab 6 Report.doc." Unpublished manuscript, EE 448: Introduction to AC Circuits and Motors, Iowa State University, Ames, Iowa, United States.

Team Information - http://sdmay19-30.sd.ece.iastate.edu/

Jessica Bader - Computer Engineering and French LCP - jabader@iastate.edu -Spring 2020

Meghna Chandrasekaran - Computer Engineering - <u>meghnac@iastate.edu</u> - Spring 2019

Katrina Choong - Electrical Engineering - <u>kachoong@iastate.edu</u> - Spring 2019 Seth Noel - Computer Engineering - <u>sanoel@iastate.edu</u> - Spring 2019 Kyle Zelnio - Computer Engineering - <u>kjzelnio@iastate.edu</u> - Spring 2019

Additional Information

Hardware Output Waveform

GUI

🖉 EE 448 Tachometer		×
786 RPM		
Input port name here		
Please pick a valid com port		
Submit		

System Accuracy Graph

System Level: RPM (stroboscope) and RPM (Arduino)

Student Feedback

Feedback	Status
Add 'help' button	Done
Do not use 'start' button	Done
Get rid of junk values that come up on start	Done
Move executable file to desktop	In-Progress
Make the measurements faster	Declined
Have more accuracy (1 RPM instead of 6 RPM)	Declined