SDMay19-30 http://sdmay19-30.sd.ece.iastate.edu

STROBOSCOPE

Adviser: Matthew Post Client: Matthew Post

Project Plan

Problem Statement

Problem:

The stroboscope for an EE lab is an unnecessary cost.

Solution:

Design a new stroboscope.

Conceptual Sketch / System Description

Functional Requirements

Non-functional requirements

- It will be able to perform all the functions required by the lab
- It will be able to have 0.5% accuracy
- It will range from 100 to 3000 RPM
- Average 3300 Lux at 6000 RPM, 12" away from target
- It will have a GUI for user interaction

- It will be more cost-effective to replace than the current version
- It will be user friendly in a manner consistent with the backgrounds of EE 448 students
- It will be documented sufficiently
- It will be flexible enough to allow potential future changes to the lab
- It will be resistant to breaking due to physical abuse by students
- It will have easily accessible parts for the ETG

Constraints and Considerations

- Students will be Mechanical Engineering majors
- Not all students are respectful of lab equipment

- Users will include:
 - Students
 - ETG staff
 - TAs
 - Professor

Similar Stroboscopes

Pictures				
Manufacturer	Monarch Instruments	Fluke Electronics	Shimpo Instruments	Newark
Name	PLS Pocket LED Stroboscope	Fluke 820-2 Stroboscope	DT-326B High Performance LED Stroboscope	Testo 477 - LED Stroboscope
Price	\$499	\$1,399.99	\$695	\$886.75

Potential Risks & Mitigation

Risk	Party at Risk	Mitigation
Strobe effect can trigger seizures in some individuals	User	Shield the light
Shipping time	Timeline	Awareness, order early
Lack of circuit board design experience	Hardware design	On-campus resources (including Matt Post, Lee Harker)
Delay in the hardware will alter speed of the strobe compared to software output	Accuracy	Calibration

Resource/Cost Estimate

One-time Costs					Recurring Costs				
Part	Price / unit	#	Total		Part	Price / Unit	#	Total	
Prototypes	\$40	5	\$200		Single case replacement	\$5	1	\$5	
Cases for all lab stations	\$5	8	\$40		Single circuit replacement	\$40	1	\$40	
Circuit board for all lab stations	\$40	8	\$320		Assemble pieces (on replacement)	10 mins	1	10 mins of ETG time	
			\$560						

SDMay19-30, Stroboscope

*** \$45 per station as opposed to \$499 per station

Project Milestones & Schedule - Semester 1

Stroboscope

					% Software Completed		% Hardware Completed		% Team Completed					
ACTIVITY	PLAN START	PLAN END	Weeks											
			1	2	3	4	5	6	7	8	9	10	11	12
Prototype 1	28-Aug	20-Sep												
Find and research circuit parts Create a GUI to interact with user, set up	28-Aug	12-Sep												
Git	28-Aug	20-Sep												
Order circuit components Research and implement PWM to create	5-Sep	12-Sep												
waveform Build circuit and test with Arduino (mock	5-Sep	12-Sep												
design with Tiva)	12-Sep	20-Sep												
Continue to test PWM to create waveform	12-Sep	20-Sep												
Prototype 2	20-Sep	26-Oct												
Create PCB on MultiSim	20-Sep	3-Oct												
Create GUI using python	20-Sep	3-Oct												
Solder on circuit parts and test PCB	11-Oct	24-Oct												
Test with hardware team's PCB	11-Oct	24-Oct												
Prototype 3 Re-evalute and finetune circuit design.	26-Oct	30-Nov												
create second PCB design	26-Oct	10-Nov												
Adjust PWM to strobe more accurately	26-Oct	10-Nov												
Test with software team's waveform	12-Nov	30-Nov												
Test with hardware team's 2nd PCB design	12-Nov	30-Nov												

Project Milestones & Schedule - Semester 2

Stroboscope

					% Software Completed		% Hardware Completed		% Team Completed		% Receiving Feed; Tes	ting				
ACTIVITY	PLAN START	PLAN END	Weeks													
			11	12	13	14	15	16	17	18	19	20	11	12	13	14
Re-evalute documents to add tachometer	14-Jan	28-Jan														
Prototype 4 Implement LEDs with better strobing effect;	22-Jan	8-Feb														
create feedback Design a PWM Mode for <300, create	22-Jan	28-Jan														
feedback	22-Jan	28-Jan														
Research tachometer Automate the process of finding RPM with a	28-Jan	8-Feb														
tachometer Create PCB design with tachomoter and test	28-Jan	8-Feb														
with software	30-Jan	8-Feb														
Test with hardware protoype 4	30-Jan	8-Feb														
Prototype 5	8-Feb	1-Mar														
Troublshoot issues of previous PCB design Analzye software to meet desired strobing	11-Feb	15-Feb														
effect Lest hardware and software together;	11-Feb	15-Feb														
prepare for March deadline testing for EE	18-Feb	1-Mar														
March deadline with EE448 testing period	4-Mar	31-Mar														
System level testing/improvements Think and discuss feedback with team	1-Apr	26-Apr														
members and client for improvements	1-Apr	12-Apr														
Adjust circuit to received feedback	1-Apr	26-Apr														
Write calibration software	1-Apr	26-Apr														

System Design

Functional Decomposition

System Requirements	Where it is met	Analysis (how it is met)
It will be able to have 0.5% accuracy	Hardware	Small enough time delay in the circuit to allow this level of accuracy
	Software	Calibration of the waveform to this level of accuracy
It will range from 100 to 3000 RPM	Hardware	Small enough time delay to allow circuit to function in this range
	Software	Waveform output can go as slow as 100 RPM or as fast as 3000 RPM. Output needs to be proportional to input
Average 3300 Lux at 6000 RPM, 12" away from target	Hardware	Sufficient ratio between LED specs and circuit voltage at all frequencies
It will have a GUI for user interaction	Software	GUI

Detailed Design

HW/SW/Technology Platforms used

Software	Hardware
 Code Composer Studio (Tiva Board) C Pycharm (GUI) Python GIT (repository) Oscilloscope (debugging) 	 MultiSim (circuit simulation) Ultiboard (PCB design) Arduino (waveform generation) Waveform generator Oscilloscope (debugging)

Test Plan

Test Case

Functional Requirement #2: It will have an accuracy of 0.5%

Test Case:

For this requirement, we want to make sure the stroboscope is accurate within the required range of 100 to 3,000 RPM with an accuracy within 0.5%

Test Steps:

- 1. Rotate the motor at 100 RPM
- 2. Measure the speed with our stroboscope
- 3. Measure the speed with the original stroboscope
- 4. Determine if the measurement is within 0.5% of the original strobe because it has 0.005% accuracy
- 5. Repeat the first 4 steps at increments of 200 RPM up to 3,000 RPM

Expected Results:

The rotational speed we measure using our stroboscope should be 0.5% accurate in comparison to the rotational speed measured from the original stroboscope.

Prototype Implementations

Current Constraints

Cause of Constraint	Time		Limit to RPM
Tiva board's PWM mode	210ms	>	300 RPM
Pulse width (microcontroller output)	100µs	<	300,000 RPM
Resulting pulse width (hardware output)	132µs	<	227,272 RPM
Current total hardware time delay	1.2ms	<	50,000 RPM
MOSFET fall time	1.1ms	<	54,545 RPM
LED + capacitor fall/discharge time	10µs	<	6,000,000 RPM
Total rise time	110µs	<	545,455 RPM

SDMay19-30, Stroboscope

Assumption: time low is at least as long as time high

Conclusion

Current Status

Plan for Next Semester

Full Team	Hardware	Software			
 Redesign system Redefine interfaces Update documentation Prototypes 3/4/5 In-lab testing Create instruction documentation 	 Finish tachometer implementation Clean up pulse width and brightness Testing Mount circuit to motor 	 Calibrate stroboscope Calculation software based on tachometer output PWM mode for < 300 RPM Calibration software 			

Task Division

Role	Responsibilities	Person
Hardware Engineers	 Lead hardware design Manage hardware-related tasks Update accomplishments Manage hardware documentation 	Katrina, Seth, Kyle
Software Engineers	 Lead software design Manage software-related tasks Update accomplishments Manage software related documentation 	Meghna, Jessie
Systems Engineer	 Keep track of overall project progress General understanding of project Mediator Stay up to date on progress, design, and problems of all parts 	Kyle, Seth
Timeline Manager	 Keep track of due dates Create intermediate goals so we get assignments completed on time Communicate timelines to group members Keep members on the timeline to ensure no missed deadlines 	Katrina
Communication Manager	 Send all emails for the group Check email in a timely manner 	Jessie

Questions?

Additional Slides

PWM Mode Calculations

- 24 bits for the period counter and match = 0d16777215
- Tiva board has an 80Hz processor

(slowest speed is limited by how high the Tiva board can count)

16777215 units / 80000000 (units / s) = 0.2097 s (300 RPM)

(highest speed is limited by our 100us rise period on a square wave)

1 / 0.0002 (s / rotation) = 5,000 RPS (300,000 RPM)

