

Table of Contents
0. Executive Summary 6

1. Requirements Specification 7

1.1 Functional Requirements 7

1.2 Non-Functional Requirements 7

1.3 Use-Cases 7

1.3.1 Student 7

1.3.2 ETG Worker 7

2. System Design & Development 8

2.1 Design Plan 8

2.2 Design Parameters 8

2.2.1 Design Objectives 8

2.2.2 System Constraints 8

2.2.3 Design Trade-offs 9

2.3 Solution Overview 11

2.3.1 Architectural Diagram 11

2.3.2 Design Block Diagram 12

2.4 Constraints, Modules, & Interfaces 12

2.4.1 Constraints 12

2.4.2 Modules 13

2.4.3 Interfaces 14

3. Implementation 15

3.1 Implementation 15

3.1.1 Diagram 15

3.1.2 Microcontroller - Technologies, Software, and Rationale 15

3.1.3 GUI - Technologies, Software, and Rationale 16

3.1.4 Circuit - Technologies, Software, and Rationale 16

SDMAY19-30 1

3.2 Standards and Best Practices 17

4. Testing, Validation, & Evaluation 19

4.1 Test Plan 19

4.2 Unit Testing 19

4.3 Interface Testing 20

4.4 System Integration Testing 22

4.5 User-Level Testing 25

4.6 Validation and Verification 27

4.7 Final Evaluation 28

5. Project & Risk Management 28

5.1 Task Decomposition, Roles, and Responsibilities 28

5.1.1 Roles and Responsibilities 28

5.1.2 Task Decomposition 29

5.2 Project Schedule 30

5.2.1 Proposed 30

5.2.2 Actual 30

Figure 5.2.3: Actual Project Schedule, Semester 2 31

5.3 Risks & Mitigation 31

5.3.1 Anticipated 31

5.3.2 Actual 32

5.4 Lessons Learned 33

6. Conclusions 34

6.1 Closing Remarks 34

6.2 Future work 35

6.3 References 35

6.4 Team Information 35

Appendices 36

SDMAY19-30 2

Appendix A: Design Process 36

Appendix B: Code Peer Reviews 37

Appendix C: Software Accuracy Testing 39

Appendix D: System Accuracy Testing 40

Appendix D: System Accuracy Testing (Continued) 41

SDMAY19-30 3

List of Figures

Figure 2.3.1: Architectural Diagram

Figure 2.3.2: Design Block Diagram

Figure 3.1.1: Implementation Diagram

Figure 4.3.1: Hardware Output Waveform

Appendix A: Design Process

Appendix B: Code Peer Reviews

List of Tables

Table 2.2.3.1: Optical Encoder vs. Low-Pass Filter

Table 2.2.3.2: Tiva board vs. Arduino

Table 2.2.3.3: Python vs. Java

Table 5.1.1.1: Roles and Responsibilities

Figure 5.2.1: Proposed Project Schedule, Semester 1

Figure 5.2.2: Proposed Project Schedule, Semester 2

Figure 5.2.3: Actual Project Schedule, Semester 2

Appendix C: System Accuracy Testing

Appendix D: Software Accuracy Testing

List of Definitions

AC: Alternating Current

COM: Communication

CPRE: Computer Engineering

DC: Direct Current

EM: Electromagnetism

ETG: Electronics Technology Group

SDMAY19-30 4

GUI: Graphical User Interface

PCB: Printed Circuit Board

SE: Software Engineering

RPM: Rotations Per Minute

SDMAY19-30 5

0. Executive Summary
The stroboscope used to measure the rotational speed of a motor shaft for the Iowa State
University Electrical Engineering 448 course currently has a high cost of repairment and
equipment replacement. Our job was to design and develop a more cost effective and
robust solution while continuing to meet all current lab requirements. This piece of
equipment would affect students, TAs, the course professor, and the Engineering
Technology Group’s staff. The new piece of equipment is planned to replace the
stroboscope starting Fall 2019.
Our solution uses a tachometer to automate the process of calculating the speed. We
divided our product into three modules: the hardware circuit, the microcontroller, and the
GUI. The interfaces between these components are well defined. We divided ourselves
into two teams. The hardware team was in charge of the hardware circuit (Kyle and
Katrina). The software team was in charge of the microcontroller and the GUI (Jessica and
Meghna). We left one team member to work between the two groups in a systems role
and help with implementation and design as needed (Seth).
We verified through system-level testing that the new product can accurately measure
rotational speed from 100 to 2000 rotations per minute on both Direct Current and
Alternating Current motors. We also tested our product at unit and interface levels. After
accuracy testing, we did field-testing in the EE 448 lab with the students taking the course
in Spring 2019. We were able to apply their feedback to our final product.
Upon evaluation of our tachometer, we found it costs 12% of the original stroboscope and
takes 20% of the original average time to measure. Furthermore, our product gained
approval from our client, the student users, and the EE 448 professor and TAs. The
students rated our tachometer at an average of 9.5/10 in terms of usability.

SDMAY19-30 6

1. Requirements Specification

1.1 FUNCTIONAL REQUIREMENTS

● It will be able to perform all the functions required by the lab
● It will have 1% accuracy
● It will range from 100 to 2000 RPM
● It will have a GUI for user interaction
● It will allow the user to change the communication port to match the port chosen

by the computer

1.2 NON-FUNCTIONAL REQUIREMENTS

● It will be more cost-effective to replace than the current version
● It will be user friendly in a manner consistent with the backgrounds of EE 448

students
● It will be documented sufficiently
● It will be flexible enough to allow (small) potential future changes to the lab
● It will be resistant to breaking due to physical abuse by students
● It will have easily accessible parts for the ETG

1.3 USE-CASES

1.3.1 Student

● Change the COM port
● Check the motor RPM on the GUI
● Open the program
● Close the program
● View the ‘help’ manual

1.3.2 ETG Worker

● Mount the tachometer
● Load the code onto the Arduino
● Connect the tachometer, Arduino, filter, and desktop
● Test the mount stability
● Load the GUI code onto the computers

SDMAY19-30 7

2. System Design & Development

2.1 DESIGN PLAN

We planned to create a tachometer. As a group, we decided this would compose of a
hardware circuit which would output some representation of the rotational speed, a
microcontroller which would convert this output into an RPM calculation, and a GUI
through which the user could read the RPM. We divided into hardware (circuit) and
software (microcontroller and GUI) teams to implement the design of these components.

For the development and test of our tachometer, we developed the process which can be
found in Appendix A. For each prototype, we started by identifying the problems we were
trying to solve with this prototype. Then, we brainstormed ideas to solve these problems.
After this, we developed the new hardware and software prototype components. Finally,
we tested the prototypes. We started with hardware and software testing, and once that
was complete, we moved on to system level testing. At this point, if our final evaluation
test criteria had been satisfied, we were done. If not, we created a new prototype.

2.2 DESIGN PARAMETERS

2.2.1 Design Objectives

For our design, we had several objectives we were focusing on meeting. The first
was to meet all requirements. It was important to both our client/adviser and
ourselves that we completed our project with full success.

Our next objective was to gain user approval from every user group. We
determined that the users of our project would include our client, the other
workers in the ETG, the EE 448 students, TAs, and professor.

Our third objective was to implement field testing to fully evaluate the success of
our product. Luckily, the lab in which the tachometer is used is at the end of the
semester. This made the timing of the lab ideal for field testing. Field testing would
allow us to evaluate our requirements, evaluate the completeness of our
documentation, evaluate user approval, and receive feedback.

2.2.2 System Constraints

Assumptions:

● The tachometer will be used by at least two students at a time
● The tachometer will be used in the EE 448 Motors Lab
● The lab will not be drastically changed in the near future
● The students will refrain from touching the tool (as they have no need)
● The lab computers run on Windows, and will not change in the near future

SDMAY19-30 8

● The final design will be mounted above the motor in the lab and be
stationary

● The motor for the lab will not change in the near future
● The Arduino can be powered by the computer

Limitations:

● The limit of RPMs should not be below 100 RPM or exceed 2000 RPM (the
values used in the lab)

● The size of the tool should be no larger than the motor it is evaluating (as
determined by the motors in Coover 1102)

● The cost to produce the end product should not exceed $500 for each
tachometer (the cost of the previous stroboscope)

2.2.3 Design Trade-offs

How to handle excess EM

We noticed that the AC motor emitted EM. Because our Hall effect sensor reads
the rotational speed of the motor using the change in magnetic field induced by
key in the shaft as it moves momentarily away each rotation, this excess EM was
destroying the validity of our hardware output. Furthermore, it was peaking at
about 10V, while the Arduino is rated for no more than 5 V and would therefore
have the potential to destroy the microcontroller. The pro/con list can be found in
Table 2.2.1: Optical Encoder vs. Low-Pass Filter. Ultimately, we decided the low-pass
filter would best suit our needs. This decision was largely driven by the cost;
creating a filter circuit cost very little for the components, while we could not find
any optical encoders which were within the acceptable price range outlined by our
client.

Optical Encoder Low-Pass Filter

Pros Cons Pros Cons

- Easy/fast to
integrate into
current design
- Less components
in the overall design

- Expensive
- Would possibly
require rewriting
software

- Inexpensive
- Can use current
software

- Takes time to
design
- Have to order PCB
-Solder on PCB

Table 2.2.3.1: Optical Encoder vs. Low-Pass Filter

Microcontroller

At the beginning of the second semester, we decided to move from a stroboscope
design to a tachometer design. When we switched over, we needed to decide if we
wanted to keep the Tiva board as our microcontroller or change to an Arduino.
The full pro/con list can be found in Table 2.2.2: Tiva board vs. Arduino. Ultimately,

SDMAY19-30 9

we decided to switch to the Arduino. This decision was made because we could
not recycle any of our previous code, so we would need to write the software from
scratch regardless. Even though we had no experience with Arduino, it is much
simpler and therefore we believed we would be able to write the Arduino software
faster, given the limited time frame.

Tiva Board Arduino

Pros Cons Pros Cons

- Already have
experience and code
- Client has easy
access to Tiva
boards

- Complicated to
write code for
- Not much time to
write the code
- None of the code
is reusable, so it
needs to be
rewritten anyway

- Easier IDE to use
- More online
resources
- Can write faster
- Still inexpensive

- Would have to
order components
- No previous
experience

Table 2.2.3.2: Tiva Board vs. Arduino

GUI Software

Finally, we needed to choose the software language for our GUI. Our advisor
suggested using Python, so we decided to evaluate whether Python would be
suitable for our needs or if we wanted to use a different language, such as Java.
Based on the factors discussed in Table 2.2.3: Python vs. Java, we decided Python
would be sufficient because it is easy to learn, and we had a resource for Python
from our advisor. If we chose Java, we would still need to learn how to complete all
the functions in the new language.

Python Java

Pros Cons Pros Cons

- Easy to use
language
- Good GUI class
- Provided with
example code from
a different project

- No previous
experience
- Bad
documentation

- Experience with
Java
- Experience using
Java GUI classes

- IDE with which we
have experience is
for mobile
applications
- Will need to learn
some functions still
- No human
resources

Table 2.2.3.3: Python vs. Java

SDMAY19-30 10

2.3 SOLUTION OVERVIEW

2.3.1 Architectural Diagram

 Figure 2.3.1: Architectural Diagram

SDMAY19-30 11

2.3.2 Design Block Diagram

Figure 2.3.2: Design Block Diagram

2.4 CONSTRAINTS, MODULES, & INTERFACES

2.4.1 Constraints

GUI

For our solution, we were required to use a GUI and restrict user access to the GUI.

Price

We needed to reduce the price of the product compared to the original
stroboscope, so we were constrained by money. The price of our components was
always one of the most important factors when choosing parts.

Motor

The motor for the lab was already designed; while we could make small
adjustments to the motor (such as adding a key, adding mounting to the motor
mount, etc) the final product needed to work with this motor.

Lab

The final solution needed to be designed to fulfill the specific labs it was being
used in. No modifications could be made to these lab manuals.

SDMAY19-30 12

2.4.2 Modules

Module 1: The GUI

The first portion of the software component is the GUI. The user will be able to
change the COM port the computer is using to communicate with the
microcontroller. From the GUI, they will be able to view the most recent RPM
calculation from the microcontroller. The GUI will be programmed in Python
using Tkinter, which is a Python interface to the Tk GUI toolkit. However, the
Arduino board will be programmed through the Arduino IDE. This is where we
will open a line of communication between the GUI and the microcontroller
through the COM port. The GUI will retrieve the output from the Arduino.

Module 2: The Microcontroller

The microcontroller also belongs to the software component. It will be an Arduino
programmed with the Arduino IDE. The microcontroller will send the most up to
date calculation of RPM to the GUI. It will also take input from the hardware
circuit in the form of a pulse. The microcontroller will utilize an interrupt on the
input pin to count the number of rotations each second. It will use this to calculate
the RPM. To help it keep steady, it will always average the last ten RPM
calculations. Furthermore, the system may experience some faulty input values
which do not accurately represent the rotational speed of the motor. To provide
some protection against these affecting the calculation, the microcontroller will be
able to identify and remove some input values which are deemed ‘faulty’. It will
determine that a value is faulty if it is more than 20% different than both the
measurement before and the measurement after. In the case, where the speed of
the motor is changing, the microcontroller will be removing values once the motor
speed remains constant.

Module 3: The Hardware Circuit

The hardware circuit takes RPM readings from a Hall effect sensor attached to the
motor over the key. Each time the motor shaft rotates, the key will pass the sensor
and induce a pulse. Specifically for the AC motor, EM waves are emitted which
creates noise in the output waveform. A low-pass filter is implicated to mitigate
unwanted noise created by the EM waves to the output of the Hall effect sensor.
The final output from the hardware circuit, the PCB, to the microcontroller is the
output of this filter. This means only the correct voltage changes are passed on.

SDMAY19-30 13

2.4.3 Interfaces

Interface 1: Hardware Circuit and Microcontroller

The hardware circuit will be connected to the microcontroller in three places.
First, it will use input pin D2 as the output of the circuit. This will be connected to
an interrupt on the microcontroller. Next, it will use the 5V output from the
microcontroller to power the Hall effect sensor. Finally, it will use the ground pin
from the microcontroller to ground the whole circuit. The hardware circuit will
output a pulse with an amplitude of more than 4V and less than 5V and an offset
of 2-2.5V. This pulse will be clean and consistent. See Figure 4.3.1: Hardware
Output Waveform for a visual example.

Interface 2: GUI and Microcontroller

The GUI will communicate with the microcontroller through a serial port. The GUI
will open this port. The user will need to set the COM port in the GUI to match the
COM port used by the computer to communicate with the Arduino (this can be
found in Device Manager). The GUI will receive the RPM calculation from the
microcontroller once the COM port has been sent. It will display this RPM for the
user. The GUI will be in charge of closing the COM port when it is finished.

The microcontroller will start calculations upon startup. When it is on, it will
output the most up to date RPM calculation every second. The microcontroller will
be powered by the computer via the USB type-A to USB type-B mini cord.

Interface 3: User to GUI

The user will only use the GUI to set the COM port. They will be able to modify
the COM port used by the program to match the COM port already used by the
computer (which can be found in Device Manager). When the microcontroller is
running, they will be able to see the most up to date RPM calculation every
second.

SDMAY19-30 14

3. Implementation

3.1 IMPLEMENTATION

3.1.1 Diagram

Figure 3.1.1: Implementation Diagram

3.1.2 Microcontroller - Technologies, Software, and Rationale
Microcontroller: Arduino nano
We picked the Arduino for our microcontroller due to its low price. Affordability is
one of the main drivers of our project, as the project revolves around creating a
more cost-efficient tool than the stroboscope currently being used. Another factor
was the well-developed IDE for programming the Arduino. This allowed us to
write the code reasonably quickly, which was important because changes to our
project required us to redo all our code in the second semester. After verifying the
nano (the smallest and least expensive Arduino) had sufficient processing power to
run at our top speeds, we decided it was a good fit.

Language: Arduino
Once we had chosen the microcontroller, this was the required language. The
Arduino IDE was also a reasonable choice because we were able to download it for
free

SDMAY19-30 15

IDE: Arduino
Finally, the IDE was easy to choose after picking our language. The Arduino IDE is
open source, easy to use, and the most recommended IDE online.

Repository: Git
Due to our need to have multiple team members develop the software as well as
use the software, we knew we needed a repository. We chose Git because it is
provided through ISU. Furthermore, we already knew how to use it due to
previous courses. Finally, Git was the recommended software repository for Senior
Design I.

3.1.3 GUI - Technologies, Software, and Rationale
Language: Python
The first factor which drove us to choose Python was it was the GUI language
recommended by our faculty adviser. His previous Senior Design group had
created a GUI with Python. Therefore, we were able to use their work as a template
to start our own. Furthermore, we found through research that Python was simple,
which meant we could pick it up quickly on our own. It also has many online
resources.

IDE: PyCharm
Based on our research, PyCharm is commonly considered the best IDE for Python.
It is also open source, so we did not need to pay to use it. Furthermore, one of our
group members had experience with PyCharm from an internship.

Libraries: tkinter, serial, PyInstaller
The decisions to use the tkinter and serial libraries came out of our Python
research. Tkinter is a well-documented library commonly used to create GUIs in
Python. It also has many online tutorials. Serial is used to open the serial port to
communicate with the Arduino. We were able to find this suggestion in a tutorial
about communicating between a Python GUI and an Arduino. Upon research
about how to create an executable from a Python program, we found that a recent
version of Python changed much about the language. Hence, many programs to
create executables do not work with the current versions. We chose PyInstaller
because it was simple to use, well recommended online, and it worked with the
version of Python we are using.

Repository: Git
(See section 3.1.2 Repository: Git) In addition, we decided it was ideal to use the
same repository to save all GUI code as our microcontroller code.

3.1.4 Circuit - Technologies, Software, and Rationale
Filter: low-pass
We chose the low-pass filter to decrease the extra EM emitted from the AC motor
mainly due to the cost. We were not able to find an optical encoder to replace the
Hall effect sensor that was within the price range of our client. The low pass filter
worked because the noise was isolated to a lower frequency than our pulsing

SDMAY19-30 16

output from the sensor. It was also ideal because it could be implemented to the
system without requiring any major changes. Finally, we could build the circuits
from components easily accessible by ETG, and it also lowered the costs and
removed shipping/arrival time. This was fitting because we were close to our
in-class testing demonstration when we found this issue.

Sensor: Hall effect
We researched various instruments that could output values based on rotational
speed. Originally, we thought of using an encoder, but there was no encoder that
was non-contact. Our reason for wanting a non-contact device was to prevent wear
on our product as much as possible in order to reduce costs. Further into our
research, we discovered active and passive speed sensors. Active sensors require
digital output direct to a controller whereas passive sensors do not need a digital
output but rely on permanent magnets, which can wear out over time.

At first, we ordered a Hall effect sensor as a test device to receive a signal from the
motor’s shaft and output the data to the arduino because it was non contact and
easier to work with. In the end, we deemed the Hall effect sensor, compatible with
our circuit and code.

CAD: SolidWorks, MultiSim
SolidWorks is a 3D modeling software provided by Iowa State and allowed us to
create virtual designs of the mount that we can then 3D print. Once printed, we
were able to test the fit and stability then quickly make changes and print again.
The main reason we chose this over other modeling software was it was already
provided by ISU.
MultiSim is a circuit board designer and simulator also provided by Iowa State.
The software let us place components on a PCB and get a board printed by a
third-party for a professional implementation of the filter we designed for the Hall
effect sensor. As the time, delay between creation and shipping from the
third-party provider was around two weeks, we used proto-board to get our testing
done because it was also provided by ISU.

Mount: 3D printer
First, we chose to 3D print the mount for repeatability. At some point the parts to
the tachometer may need to be replaced or repaired, in which case an ETG worker
will need to make a new mount. 3D printing is an easy, fast, and readily available
option.

3.2 STANDARDS AND BEST PRACTICES

In this project, there are several IEEE standards which we will be following to ensure our
project is high quality, ethical, and comparable to other products:

1. IEEE Standard for Software and System Test Documentation [1]

SDMAY19-30 17

This standard creates a process for acquiring data, creating documentation, and
maintaining documentation. Our product is to be used in a lab for years after we
have left ISU. Therefore, the documentation of our product is essential for the
maintainability of the product. By following this standard, we will ensure that our
documentation will allow future users at all levels to successfully use the product.
We will also ensure that upgrades and maintenance can be made on the system so
it will be usable over a long period, even if the lab needs are slightly modified.

2. IEEE Standard for System, Software, and Hardware Verification and Validation [2]

This standard defines the verification and validation process used to review a
product to determine whether it satisfies the requirements and the user’s needs.
We will follow this standard to verify that our system meets the requirements that
we have defined. By using this method to prove we have satisfied our
requirements, we will be able to evaluate whether we have met our requirements
and prove to our client this is the case.

3. IEEE Guide for Selecting and Using Reliability Predictions Based on IEEE 1413 [3]

This standard outlines factors which can be used to determine the reliability of a
product, defines what information should be included in the reliability report, and
identifies acceptable ways to collect data regarding product reliability. One of our
most important functional requirements is that the tachometer can operate with a
1% reliability from 100 RPM to 2000 RPM, compared to the original stroboscope
that the lab used. Therefore, we will need to evaluate how reliable our tachometer
is across this range. We will use this standard to determine reliability factors,
compile information for our reliability report, and develop a method to collect
data. Following this standard will best evaluate whether our product meets this
criterion and will give substance to our final report for our client.

4. Peer Code Reviews (Best Practice)

To hold our code to the highest standard, we used a peer code review. We had
three SE/CPRE students (Francisco Arreola, Kristina Robinson, and Kyle Zelnio)
who had not helped write the code, review it to fix any deficiencies they could find.
They also ensured the code was well commented, easy to understand,
efficient/well written, and error-free. Peer-reviews are often used in the workplace
because they help reduce errors and the amount of time spent debugging. The full
set of feedback can be seen in Appendix B. From these peer reviews, we received
feedback which we were able to use to improve our final product.

SDMAY19-30 18

4. Testing, Validation, & Evaluation

4.1 TEST PLAN

Our plan for testing includes four parts. The first part is the unit testing, at which
point we verify that each of the three modules (GUI, microcontroller, and
hardware circuit) perform their functions as required. Next, we will specifically test
the interfaces between these modules to ensure they are interacting as we have
specified. After this, we will test the system as a whole to ensure it follows all
functional and nonfunctional requirements. Finally, we begin field testing by using
our tachometer in the EE 448 lab with real students so we can receive feedback
from the users.

All of our tests are manual. We decided to do this because we did not have
applicable use cases with automatic testing for the full tachometer. Most of our
testing included user feedback or hardware output, which further limited us in
terms of automatic tests.

Our tests covered 100% of our functional and nonfunctional requirements, with
some extra tests for units and interfaces. We knew that in industry, it is important
to be able to compare the requirements to their tests. Not only did we write tests
for each requirement, but the tests define which requirement they are verifying.

4.2 UNIT TESTING

Functional Requirement #4: It will have a GUI for user interaction.

Test Case:

For this requirement, we want to test and make sure the GUI works.

Test Steps:

1. Open the GUI
2. Ensure all buttons perform their intended function
3. Connect the GUI to the microcontroller
4. Ensure that “0 RPM” is being output

Expected Results:

We expect the GUI to be functional. It should be able to display the RPM and
change the communication port.

SDMAY19-30 19

Final Results:

As of 4/24/19, our GUI is fully functional.

Requirement: The Hall effect sensor will create a clear pulse from where it is mounted.

Test Case:

For this requirement, we want to ensure the Hall effect sensor is mounted
correctly and capable of outputting a pulse as described in our interface
specifications.

Test Steps:

1. Correctly mount the Hall effect sensor on the motor station
2. Connect the sensor to an oscilloscope to check the pulse
3. Start the motor and set it to a static RPM value
4. Check if the reading on the oscilloscope outputs a clean, clear, and

consistent pulse

Expected Results:

We expect the Hall effect sensor to output a clear pulse reading when the motor is
running.

Final Results:

As of 4/24/19, our Hall effect sensor outputs a clear pulse for the RPM being read.

4.3 INTERFACE TESTING

Requirement: The hardware circuit shall output a pulse which will be clean, consistent,
and accurate within 0.5% to the rotational speed of the motor in hertz from 100 RPM to
2000 RPM.

Test Case:

For this requirement, we wanted to ensure the output of the hardware would be
readable by the software components.

Test Steps:

1. Set up the hardware part of the circuit, including the Hall effect sensor and
low-pass circuit

2. Attach an oscilloscope to see the output of the low-pass circuit
3. Start the motor at 100 RPM
4. Evaluate the output pulse to ensure it is clean and consistent
5. Measure the rotational speed of the motor with a stroboscope. Measure the

speed of the output wave in hertz with the oscilloscope. Ensure these

SDMAY19-30 20

match with the equation to within 0.5%PM /60f = R
6. Repeat this process for every increment of 100 RPM until 2000 RPM
7. Repeat for both the AC and DC motors

Expected Results:

We expect the output wave to be clear and consistent. We also expect it to be
accurate with the frequency. These should be true from 100 to 2000 RPM.

Final Results:

We found that the output of the hardware was clean, consistent, and accurate to
the rotational speed of the motor as measured by the stroboscope across the range
from 100 RPM to 2000 RPM. Figure 4.3.1 shows an example of the output of the
hardware as read by the oscilloscope. The stroboscope reading at this value was
1787 RPM, which we can see matches the frequency of 29.693 ()787/60 9.7831 = 2
with 99.70% accuracy.

Figure 4.3.1: Hardware Output Waveform

Requirement: The software should be able to calculate RPM with 0.5% accuracy from a
clean, consistent output pulse from 100 RPM to 2000 RPM.

Test Case:

For this requirement, we wanted to ensure the software was accurately calculating
the RPM if it was given a near-perfect pulse.

Test Steps:

1. Set up the GUI and Arduino
2. Set up the signal generator as the input to the Arduino
3. Create a pulse with amplitude of 4.7V, an offset of 2.35V, and a duty of 80%

SDMAY19-30 21

4. Use the equation to ensure the RPM calculation displayed onPM /60f = R
the GUI is within 0.5% of the frequency of the pulse

5. Repeat this from 1.67 Hz to 33.3 Hz at intervals of 1.67 Hz

Expected Results:

We expect to find that the software can accurately calculate the RPM if given a
near-perfect pulse.

Final Results:

We found that every measurement was 99.5% accurate or higher, which was
within our 0.5%. The table with complete results can be found in Appendix C:
Software Accuracy Testing.

4.4 SYSTEM INTEGRATION TESTING

Functional Requirement #1: It will be able to perform all the functions required by the
lab.

Test Case:

Based on [4, 5], we were able to determine that the lab will require students to
measure the speed of a motor rotating at speeds ranging from 234 RPM to 1804
RPM. Based on these values, we were able to determine that a range from 100 RPM
to 2000 RPM will fulfill all needs of the lab.

Test Steps:

1. Complete a prototype for the tachometer design
2. Test out this prototype in the EE 448 Lab by allowing the students and TAs

to use it
3. Get feedback from the students and TAs
4. Use their feedback to make improvements to our tachometer prototype

design

Expected Results:

We expect our tachometer design to fit all the needs of the lab after our final
design. The feedback we will be getting will hopefully be based on simple technical
issues.

Final Results:

As of 4/26/19, the tachometer was used to complete the lab. No use of the original
stroboscope was required. The following feedback was taken to improve the
functionality:

SDMAY19-30 22

● The RPM can only read in multiples of six. It would be preferred if it could
read in multiples of one.

● It takes about 10 seconds to get a correct reading once the motor has
stopped changing speed. It would be preferred if this happened faster.

● When the GUI first connects to the microcontroller, several values are
output at once. It would be preferred if this did not happen.

● Add a label to the RPM.

Functional Requirement #2 & #3: It will have an accuracy of 1%, and it will range from
100 to 2000 RPM.

Test Case:

For this requirement, we want to make sure the tachometer is accurate within the
required range of 100 to 2,000 RPM with an accuracy within 1%

Test Steps:

1. Rotate the motor at 100 RPM
2. Measure the speed with our tachometer
3. Measure the speed with the original stroboscope
4. Determine if the measurement is within 1% of the original strobe because it

has 0.005% accuracy
5. Repeat the first 4 steps at increments of 100 RPM up to 2,000 RPM

Expected Results:

The rotational speed we measure using our tachometer should be 1% accurate in
comparison to the rotational speed measured from the original stroboscope.

Final Results:

As of 4/15/19, the system can range from 100 to 2000 RPM. We have found that our
accuracy is within 1% for higher RPM values ranging from 300 RPM to 2000 RPM.
For values below 300 RPM, the accuracy ranges from 1% to 4%. We have decided
this is acceptable because the system is very difficult to measure with the
stroboscope at this range. The complete results can be found in Appendix D.

Non-Functional Requirement #4: It will be flexible enough to allow potential future
changes to the lab.

Test Case:

For this requirement, we want to determine that we have programmed our
software to allow for future updates.

SDMAY19-30 23

Test Steps:

1. All values will be stored in variables (nothing will be hard coded)
2. All code will be commented to explain its functionality
3. A review will take place at the end to ensure the first two steps have been

completed

Expected Results:

We expect that upon review, our code will follow these standards 100% of the time.

Final Results:

A code review on 4/26/18 has determined we are following these standards 100% of
the time.

Non-Functional Requirement #6: It will have easily accessible parts for the ETG.

Test Case:

For this requirement, we want to make certain that the ETG will be able to order
all parts for the tachometer easily and through the processes they are already
using.

Test Steps:

1. Our first choice for parts shall always be parts which the ETG is already
ordering for another course, purpose, or has in stock

2. If there are no parts already available through the ETG, we will choose
parts from the suppliers the ETG most often uses

3. We shall only order parts from new places when the first two criteria
cannot be met

4. A review will take place at the end to ensure we followed these criteria

Expected Results:

We expect that upon review, we will find we have followed these steps 100% of the
time when choosing components for our project.

Final Results:

A review of our current parts as of 4/24/19 has determined that we are following
these standards 100% of the time.

SDMAY19-30 24

4.5 USER-LEVEL TESTING

Non-Functional Requirement #2: It will have a user-friendly GUI

Test Case:

For this requirement, we want to determine that the GUI is easily usable with the
background level of our student users.

Test Steps:

1. Install our fully-functioning tachometers in Coover 1102 before the
stroboscope lab for EE 448 in April of 2019

2. Have the students complete the lab
3. As the students leave, ask them to rate the tachometer on a scale from 1 to

10 in terms of usability. Ask them to give any additional feedback about the
usability at this point.

Expected Results:

We expect that we will receive an average rating of over 80 usability. We also
expect that we will receive feedback on difficulties which we can use to further
improve user-friendliness of the tachometer.

Final Results:

Our tachometer received an average of 9.5/10 in terms of usability. We received the
following feedback on the usability:

● Add a help button.
● Put the executable in an easier place to locate (such as on the desktop).
● Get rid of the start button as it can cause problems for some students, and

has no true purpose.

Non-Functional Requirement #3: It will be documented sufficiently.

Test Case:

For this requirement, we want to determine that setup manual that for the ETG
workers is well documented.

Test Steps:

1. Ask a member of the ETG to assemble our product from the individual
pieces using our instructions

2. Have the ETG member complete a survey which discussed the ease of setup
and asks them to give an explanation of any difficulties they had.

SDMAY19-30 25

Expected Results:

We expect that the ETG member will have no medium or large difficulties. We
also expect them to have minimal difficulties and give enough feedback for us to
diagnose and resolve any issues with the clarity of the instructions.

Final Results:

As of 4/23/19, we tested out our manual with an ETG member and found that he
had no issues with setting up using our manual. He had no additional feedback or
suggestions.

Non-Functional Requirement #5: It will be resistant to breaking due to physical abuse
by the students.

Test Case:

For this requirement, we want to determine that the product has a low level of
maintenance required due to the product breaking.

Test Steps:

1. Install our fully-functioning products in Coover 1102 before the stroboscope
lab for EE 448 in March of 2019

2. Have the students complete the lab
3. Take note of all requests for maintenance of the product to the ETG staff
4. Have the Teaching Assistant fill out a survey about their experience with

the product, including if any of the products broke or required
maintenance of any kind

Expected Results:

We expect that no products will require repair during the first semester. We also
expect that if one breaks, we will be able to collect enough data through records
from the ETG and TA in order to diagnose and determine a long-term solution to
ensuring the tachometers do not regularly break in this way.

Final Results:

As of 4/26/19, we found that our tachometer is fully functional in the EE 448 lab.
During in-lab testing, we found that none of the parts got damaged and did not
need any repair. This is better than the stroboscope because there were three to
four stroboscopes that were in need of repair by the end of every semester.

In addition, we found it was more resistant to breaking than our original scope
required: we assumed that students would not mess with the hardware because
they had no need. While one set of students did ‘break’ the tachometer by

SDMAY19-30 26

detaching the microcontroller from the computer, the system was fine once
reattached. In the future, the motor will be entirely encased which will prevent this
from happening.

4.6 VALIDATION AND VERIFICATION

Non-Functional Requirement #1: It will be more cost-effective to replace than the
current stroboscope.

Test Case:

For this requirement, we want to determine that the final product is less expensive
than the current stroboscope being used.

Test Steps:

1. Look up the price of the current stroboscope
2. Calculate possible price ranges for the different possible parts used for our

design
3. Total the price to fully outfit a station with our new parts for the

tachometer
4. Compare our total price for the tachometer to the original stroboscope

price
5. The price of the new product should be cheaper and if not, change parts to

something that would result in a cheaper model

Expected Results:

We expect that our final price to outfit a lab station with the new product will be
less than 25% of the price of the current stroboscope.

Final Results:

As of 4/26/19, our tachometer costs $60.10 in total. This is 12% of the cost of the
original stroboscope at $500, so we passed this requirement.

Piece Price

Mount $4.00

Sensor $17.60[2] / $21.56[1]

Arduino $22.00

PCB board $10.00

USB cord $3.50

Miscellaneous hardware $3.00

SDMAY19-30 27

[1] Price for individual sensors.

[2] Price per 10 sensors.

4.7 FINAL EVALUATION

First and foremost, our final product meets all functional and nonfunctional requirements.
Furthermore, our product received client, student, professor, and TA approval. The TAs
were especially excited for the new tachometer as it made their job much easier. By
removing the need for the user to interact with the motor shaft and measuring device, we
were able to make the product more durable. It also made the lab safer, as the motor was a
dangerous piece of equipment which required eye protection and had the potential to
injure students as they measured if they were not careful.

We were able to reduce the cost by 88%, as the original stroboscope cost $500 compared
to $60.10 for our tachometer. We were also able to reduce the average time to
measurement by 80%, from an average of 50 seconds to 10 seconds every time. We verified
usability of the product through student ratings, and scored an average of 9.5/10 on our
model. We also added user feedback from this in-field testing to further improve our
product in terms of usability.

5. Project & Risk Management

5.1 TASK DECOMPOSITION, ROLES, AND RESPONSIBILITIES

5.1.1 Roles and Responsibilities

See Table 5.1.1.1: Roles and Responsibilities for the list of roles, descriptions, and the
members assigned to carry out these responsibilities.

Role Member

Hardware Team - coordinate and lead the research,
design, and implementation of the hardware

Kyle, Katrina, Seth*

Software Team - coordinate and lead the research, design,
and implementation of the software

Meghna, Jessica,
Seth*

Systems Engineer - attend both hardware and software
meetings; assist in interface specifications

Seth

Testing Team - design and implement testing at the
module and system level; in charge of ensuring the final
product satisfies all requirements

Meghna, Jessica,
Seth

Timeline Manager - create the group timeline; ensure the
group is meeting deadlines

Katrina

SDMAY19-30 28

Communication Manager - facilitate communication with
the adviser/client, professor, and all other outside
stakeholders

Jessica

Table 5.1.1.1: Roles and Responsibilities

* refers to member holding this role for a partial semester

5.1.2 Task Decomposition

Task Team member(s)

GUI creation Jessica, Meghna

Arduino programming Jessica, Meghna

GUI/Arduino interface Jessica, Meghna

Software testing Jessica, Meghna,
Seth

Picking/ordering components Seth, Katrina, Kyle

Mounting Katrina, Kyle

Low-pass circuit design Seth

PCB Design Kyle

Hardware testing Seth

System-level testing Seth, Meghna,
Jessica

Documentation Full team

Language/IDE Research Meghna, Jessica

SDMAY19-30 29

5.2 PROJECT SCHEDULE

5.2.1 Proposed

Figure 5.2.1: Proposed Project Schedule, Semester 1

Figure 5.2.2: Proposed Project Schedule, Semester 2

5.2.2 Actual

(Semester 1 was equivalent to the Figure 5.2.1: Proposed Project Schedule, Semester 1).

SDMAY19-30 30

Figure 5.2.3: Actual Project Schedule, Semester 2

5.3 RISKS & MITIGATION

5.3.1 Anticipated

Going into the first semester we had anticipations about how our implementation
of a stroboscope would go.

First, we anticipated it would be somewhat of a hurdle to get the specific SMD
LEDs on time as the shipping time would slow things down. Also, we thought that
when we got to designing and printing the PCBs, the wait time on them could
potentially halt our progress.

Next, we were worried because no one in our group had any experience in
designing printed circuit boards and we saw this as a huge learning curve to
overcome. We planned on seeking help from Lee Harker to aid us before getting
our first design completed and printed.

Finally, we were unsure of how accurate our clock speed on the Tiva board would
be. We thought the latency of our circuit could add to the accuracy of the
stroboscopes RPM measurement.

Most of the anticipated risks became irrelevant when we changed from a
stroboscope to a tachometer at the beginning of the second semester.

When we found out we were switching to the tachometer going into the second
semester, our first anticipated risk was that we would not have very much time to
redo our designs and implementations. We attempted to mitigate this by changing
our software code from the Tiva board to the Arduino.

We also worried about how much time we would need to redo our documentation,
which was now irrelevant. Starting documentation early mitigated this issue.

SDMAY19-30 31

Furthermore, working on hardware and software at the same time looked to be
difficult. Because the hardware was not ready, we would not fully be able to test
the software early. To smoothen this transition, our team defined unit tests which
could be done without using other modules.

5.3.2 Actual

Our biggest risk was testing of our product. Because we were designing the
hardware and software at the same time, we were somewhat limited in our ability
to test the product as a whole. We solved this by isolating the components during
unit testing, so we could test the hardware and the software without depending on
the other. This also helped us when we got to system level testing because we
already knew the components worked on their own. Another factor that helped us
mitigate this risk was working on the components early; by having everything
ready for testing at a system level several weeks before we needed the product, we
gave ourselves time to test and fix errors.

Ordering parts became a large risk for us as well, due to the timeline of arrival. The
first time we ordered parts with 2-day shipping, the shipping was delayed and it
took about four days to arrive. The second time we did not realize that Saturday
did not count as a shipping day. Both of these part delays required us to change
our field testing schedule as we were unable to make our original deadlines.
Luckily, in this situation we were able to rearrange our schedule. If we were to do
it again, we would have ordered parts earlier.

Another risk was required components that were outside the scope of our
education as computer and electrical engineers. A problem we ran into was that
our system needed to be mounted to the motor well enough to avoid shaking,
which would distort our sensor output. As this is generally a mechanical
engineering task, we struggled to design this mount. This took a large amount of
the semester for our hardware team. Eventually, we decided with our
client/adviser that mount design was outside the scope of our project and decided
that the client would have the mount redesigned later by someone in the
mechanical engineering domain.

A final risk we faced was that our system would not be documented well enough to
maintain in the future. We mitigated this by testing some of our documentation.
After writing a manual to describe the setup of the full product on the motor, we
had a third party who had no exposure to our project set the tachometer up on a
fresh motor using the instructions, from the point of view of an ETG worker. We
were able to take feedback from this experience to improve our documentation.
Finally with our improved documentation, we had an ETG member set up the
tachometer to verify the final version was clear and easy to follow.

SDMAY19-30 32

5.4 LESSONS LEARNED

Test out the product in the intended environment early on. We made the mistake of
assuming the tachometer would work the same on the AC motor as on the DC motor, and
did not try it on the AC motor until later in the process. This was when we found that the
AC motor was unshielded and therefore gave off too much EM for the Hall effect sensor. If
we would have verified this earlier, we would have had more time to solve this problem.

Check with all first to third party users early in the process. When we started, we worked
with our client but did not verify the needs of the professor who taught the class, until the
end of the first semester. This discussion ended up changing the project entirely because
we did this so late, we were rushed in the second semester to redesign the entire project.

Order parts early, as others’ time management is not always reliable. Twice, our expedited
shipping took several days longer than what we paid for due to unforeseen shipping
errors. While we were able to adjust our schedule to adapt to these delays, we would not
have been able to make these adjustments in every situation. Therefore, we should have
had our parts ready to order earlier.

Obtain measurements of the motor and dimensions of possible product before starting a
3D print. In the beginning, we would approximate the size of components because we
were impatient and wanted to have a print to test; however, this proved to be time
insensitive and inconvenient when we wanted to meet deadlines or mass produce a
mount. Towards the end of the semester, we knew we had to meet the deadlines,
especially for field testing, and were more conscious of taking accurate measurements
before 3D printing.

Prepare all components. Because we did not prepare well the first time by gathering all the
needed supplies required to set up our tachometer on each station in the lab, the setup
ended up taking several hours longer than needed. By preparing ahead of time for the
second setup, we reduced our time by quite a bit.

SDMAY19-30 33

6. Conclusions

6.1 CLOSING REMARKS

Our main goal was to meet all functional and non-functional requirements. We were able
to verify 100% of our functional and non-functional requirements through accuracy testing
(see Section 4).

Through field testing with our users, we were able to verify that our client (Matt Post), the
EE 448 students, the professor teaching EE 448, and the lab TAs were all happy with the
final product. The students rated our product an average of 9.5/10 in terms of usability.
Furthermore, no tachometers broke during the lab sessions; while there is not yet enough
testing to prove it is less or more reliable than the original stroboscope, still, this is a
promising sign. We also removed the user’s need to physically interact with the tool,
which should make the tool more reliable and the motors safer. The TAs were able to
verify that the new system is easier to teach to the students. In addition, we found that we
were able to reduce the cost by 88%. We were able to reduce the time taken on average
per measurement by 80% as well and overall, we found that our project was 100%
successful in meeting our project objectives.

SDMAY19-30 34

6.2 FUTURE WORK

Our client has identified that it would be useful if the system could also change the
rotational speed of the motor, rather than just measuring it. Adding this feature would
remove 100% of the user’s need to interact with the motor. Not only would this be easier
for the user, but it would be safer because the motor could be encased completely.

Another addition to the system is the mount may be redone. As this was closer to
mechanical engineering than computer/electrical engineering, it was decided this was
outside the scope of our project. While the system as a whole fulfills all accuracy
requirements with the current mount, a mount designed by a mechanical engineer could
further improve the system.

Furthermore, the Arduino will be set to a specific COM port every time. This would allow
the COM port to be hard-coded into the GUI code. Therefore, the user would not need to
look up and change the COM port on the system.

6.3 REFERENCES

[1] IEEE Standard for Software and System Test, IEEE Standard 829, 2008.

[2] IEEE Standard for System, Software, and Hardware Verification and Validation, IEEE
Standard 1012, 2012.

[3] IEEE Guide for Selecting and Using Reliability Predictions Based on IEEE 1413, IEEE
Standard 1413.1, 2002.

[4] T. Bigelow. “EE 448 Lab 5 Report.doc.” Unpublished manuscript, EE 448: Introduction
to AC Circuits and Motors, Iowa State University, Ames, Iowa, U.S.A.

[5] T. Bigelow. “EE 448 Lab 6 Report.doc.” Unpublished manuscript, EE 448: Introduction
to AC Circuits and Motors, Iowa State University, Ames, Iowa, United States.

6.4 TEAM INFORMATION

Jessica Bader - Computer Engineering and French LCP - jabader@iastate.edu - Spring 2020

Meghna Chandrasekaran - Computer Engineering - meghnac@iastate.edu - Spring 2019

Katrina Choong - Electrical Engineering - kachoong@iastate.edu - Spring 2019

Seth Noel - Computer Engineering - sanoel@iastate.edu - Spring 2019

Kyle Zelnio - Computer Engineering - kjzelnio@iastate.edu - Spring 2019

SDMAY19-30 35

mailto:jabader@iastate.edu
mailto:meghnac@iastate.edu
mailto:kachoong@iastate.edu
mailto:sanoel@iastate.edu
mailto:kjzelnio@iastate.edu

Appendices

APPENDIX A: DESIGN PROCESS

SDMAY19-30 36

APPENDIX B: CODE PEER REVIEWS

Francisco Arreola

SDMAY19-30 37

Kristina Robinson

Kyle Zelnio

SDMAY19-30 38

APPENDIX C: SOFTWARE ACCURACY TESTING
Goal RPM: Hz RPM (generator) RPM (Arduino) Accuracy

100 1.666666667 100 99 99%

200 3.333333333 200 201 99.50%

300 5 300 300 100.00%

400 6.666666667 400 399 99.75%

500 8.333333333 500 501 99.80%

600 10 600 600 100.00%

700 11.66666667 700 699 99.86%

800 13.33333333 800 801 99.88%

900 15 900 897 99.67%

1000 16.66666667 1000 999 99.90%

1100 18.33333333 1100 1101 99.91%

1200 20 1200 1200 100.00%

1300 21.66666667 1300 1299 99.92%

1400 23.33333333 1400 1401 99.93%

1500 25 1500 1497 99.80%

1600 26.66666667 1600 1599 99.94%

1700 28.33333333 1700 1701 99.94%

1800 30 1800 1797 99.83%

1900 31.66666667 1900 1899 99.95%

2000 33.33333333 2000 1998 99.90%

SDMAY19-30 39

APPENDIX D: SYSTEM ACCURACY TESTING

AC:

Goal RPM: RPM (stroboscope) RPM (Arduino) Accuracy

100 124 120 96.774%

200 196 183 93.367%

300 307 309 99.353%

400 404 407 99.263%

500 505 504 99.802%

600 590 591 99.831%

700 708 708 100.000%

800 816 816 100.000%

900 902 900 99.778%

1000 1019 1014 99.509%

1100 1100 1098 99.818%

1200 1191 1194 99.749%

1300 1312 1311 99.924%

1400 1391 1389 99.856%

1500 1514 1515 99.934%

1600 1593 1593 100.000%

1700 1722 1719 99.826%

1800 1804 1802 99.889%

SDMAY19-30 40

APPENDIX D: SYSTEM ACCURACY TESTING (CONTINUED)

DC:

Goal RPM: RPM (stroboscope) RPM (Arduino) Accuracy

100

200 167 177 94.35%

300 310 309 99.68%

400 423 423 100.00%

500 511 510 99.80%

600 617 615 99.68%

700 702 702 100.00%

800 809 807 99.75%

900 915 915 100.00%

1000 1012 1011 99.90%

1100 1115 1113 99.82%

1200 1191 1191 100.00%

1300 1302 1299 99.77%

1400 1414 1413 99.93%

1500 1509 1509 100.00%

1600 1611 1611 100.00%

1700 1707 1707 100.00%

1800 1815 1815 100.00%

1900 1897 1896 99.95%

2000 1996 2001 99.75%

SDMAY19-30 41

